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OF 

Abstract-New Stephan-like problem is defined and exact solutions for temperature and moisture 
distributions as well as the position of the moving freezing front in a humid porous half-space are 
obtained. The analytical solution is programmed in BASIC and some illustrative examples are plotted. 
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NOMENCLATURE 

constants of integration; 
thermal diffusivity; 
moisture diffusivity; 
constants of integration; 
specific heat capacity; 
Fourier number, a2 7J12 and a2 zJx2 

respectively; 
thermal conductivity; 
Kossovitch number, ruo/(c2 At); 
characteristic length; 
Luikov number, a,/a2; 

Posnov number, 6AtJua; 
latent heat of freezing; 
position of freezing front; 
nondimensional position of freezing 
front, s/i; 

ti (x, 7), t2 (x, z), temperature; 
Ti (X, Fo), T2 (X, Fo), nondimensional temperature, 

[tr (x, 7) - tillAt and [f2 (x, 7) - t&At 

respectively; 

u(x, 7), moisture content of a body; 

;, 
length coordinate; 
nondimensional length, xJ1; 

Z(X, Fo), potential defined by equation (17); 

erf( ), error function; 
erfc( ), complimentary error function. 

Greek symbols 

6, thermal gradient coefficient; 
W, Fo), nondimensional moisture potential, 

[u0 - u(x, 7)lh ; 

1, nondimensional constant, S/[2(Fo)*]; 
7, time. 

Subscripts 

1, first region, 0 < X < S, 
1/(4a2) < Fox < co; 

2, second region, S < X < co, 
0 < Fox < 1/(4A2); 

*Paper presented at the Sixth International Congress of 
the Fondation Franqaise d’Etudes Nordiques: Problems 
Raised by Frost Action. Fundamental and Applied 
Researches (Rocks and Artificial Buildings Materials) Le 
Havre (France) 23-25 April 1975. 

s, 

;1,12, 

at surface X = 0; 
at freezing front X = S; 
ratio of properties of region 2 to 1 and 
1 to 2 respectively. 

1. INTRODUCTION 

SINCE 1963, in Laboratoire d’ACrothermique de 
Meudon, fundamental research has been performed 
on the freezing of porous media [l, 21. In the papers 
cited it is shown experimentally that the freezing of 
soil is accompanied with a set of interconnected 
phenomena among which an important role is played 
by the migration of moisture towards the freezing 
front. 

The well-known mathematical model, formulated by 
Stephan [3] does not account for the movement of 
moisture. But in connection with the drying theory 
new more complicated Stephan-like problems were 
studied in [4]. 

In the present study a similar model is defined 
corresponding to the freezing of humid porous half- 
space and the exact solution is obtained for temperature 
and moisture distributions as well as for the position of 
the moving freezing front. The analytical solution is 
coded in BASIC for minicomputer WANG 2200 and 
some illustrative examples are plotted. 

2. STATEMENT OF THE PROBLEM 

Let us consider the flow of heat and moisture through 
a porous half-space during freezing. The position of 
phase change front at time 7 is given by x = s(7). It 

divides the porous body into two regions. 
In the freezing region, 0 < x < s(7), there is no 

moisture movement and the temperature distribution 
is described by 

at1 (x, 7) a2t1 (x, 7) 
dr= al 

8x2 
(1) 

The region s(7) < x < co is humid capillary porous 
body in which there are coupled heat and moisture 
flows. The process is described by the well known 
Luikov’s system [5], for the case E = 0: 

at2 (x, 7) a2t2 (x, 7) 
7 = a2 ax2 (2) 

auk 7) iY2u(x, 7) 
7=“” 

a2t2 (x, 7) 
-----++a,d------. ax2 ax2 (3) 
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The initial dist~butions of temperature and moisture 
are uniform 

tz(x,O) = trjco,z) = to, u(x,O) = u(co,z) = ug. (4) 

It is also assumed that on the surface of the half- 
space the temperature is constant but differing from the 
initial one 

t,@, 7) = t,, (5) 

where t, < tv. 
On the freezing front, exists an equality between the 

temperatures 

ti(S,2) = t&T) = t,. (6) 

Heat and moisture balance at the freezing front 
yields 

k at,(S,7)_k at2(&7) dd7) 

l--z-- 2-z- 
= f.4, ~)PZ rx (7) 

at@, 7) + 6 at2 (s, 7) 0 

ax -z-=. 
(8) 

The set of equations (l)-(3) can be put in a non- 
dimensional form as follows 

WX,Fo)= at2a%(x,Fo) 
SO 3x2 

(9) 

a5 (X, Fo) a2 Tz (X, Fo) 

aFo = ax2 (10) 

g=, a%(x, Fo) 

8Fo 3x2 

_Lupn~(xm) 

zr-’ 
(11) 

The initial and boundary conditions are 

T2(X,0) = 7;(co, Fo) = 0, 0(X, 0) = @(co, Fo) = 0 (12) 

T,(O,Fo) = T,. (13) 

or 

&-Lu 
Lupn’ 

Equation (18) becomes 

3. SOLUTION OF THE PROBLEM 

For convenience in the derivation of the 
we introduce now a new variable: 

2(X, Fo) = T2 (X, Fo)+ C@(X, Fo). 

(20) 

cilz(x, F”) - Lu 
azz(x, Fo) 

aFo ax2 . (21) 

Then the pure heat conduction type differential 
equations, like equations (9), (10) and (21) have the 
following solutions: 

%(X$0) = A1+Bierf (221 

X 
Tz(X,Fo)= Az+Bzerf - 

i > 2(Fo)+ 
(23) 

2(X, Fo) = A3 +& erf . (24) 

Substitution of equations (20), (23) and (24) in (17) 
yields 

The constants Ai, AZ, A3, B1, B2 and BJ have to 
be chosen so that they satisfy the initial and boundary 
conditions (12)-(16). For the case under consideration, 
this is possible and consequently the problem has an 
exact analytical solution. 

From the initial condition (12), one obtains a system 
of two algebraic equations and its solution yields 

The interface conditions are Bz = -AZ, B3 = --AS. 

T, (s, Fo) = T2(s, Fo) = T, (14) 

a&s, Fo) Pn U2(s, F4 
The boundary condition (13) leads to 

___- 
ax = 

0 
ax 

WI Al = T,. 

klz 
aq(s, Fo) az(s, Fo) dS(Fo) 

ax - ax 
= Ko( 1 - e(s, Fo)] dFo, From the condition (14), one obtains 

(16) T,+B1erf[@12)i] = A2erfc/Z = T,, 

where 
solution, A=-!- 

2(Fo)+ 

(17) 

anstant c 
It follows from equations (15) and (16) that: 

After multiplying equation (11) with a CI 
and adding the result to equation (lo), one obtains 

&{T2(X,Fo)+CB(X,Fo)} = (1-CLuPn) 

(Lu)*Bs exp( - n2/Lu)- B2 exp( --AZ) = 0 

and 

1. 

(35) 

(271 

(28) 

(29) 

“a Y 

x; Z(X,Fo)+ 
i 

1 _z;Up,@(X,Fo) 
B1 (a:‘,tt -exp(-~2/u12)-B2exp(-12) 

. (18) 

In order that equation (18) be of the pure heat con- 
-s [A3 erfc[A/(Lu)*] - A2 erfc(1)]). 

duction type, one has to assume that (30) 

CLU 
c= (1% 

After determining the constants AI, AZ, A3, B1, Bz 

1-CLuPn and B3 from equations (26) to (29), the solutions (22), 



Freezing of humid porous half-space 

FIG. 1. Influence of Ko on non-dimensional temperature and moisture. 

FIG. 2. Influence of tu on non-dimensional temperature and moisture. 
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FIG. 3. Influence of Pn on non-dimensional tem~rature and moisture. 
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(23) and (25) can be written as 

Tl (Fo,) = T, + erf~~~f~2(a121F~~r~~ 
a12 + l/(4/27 < Fo, < co (31) 

T, Tz (Fo,) = __ 
1 

erfc ___ 
erfc(1) ! 1 2(Fo,)f ’ 

0 < Fo, < l/(42’) (32) 

B(Fo,) = T,L”p” 1 exp(-1’) _____ 
1 -Lu (Lu)” e&(l) exp( - n’/Lu) 

- (33) 

The equation (30) gives the following transcendental 
equation for the determination of i: 

X 
erfc[&@)+] 

exp( - 1’/Lu) 
- 1 

>i 
(34) 

Using a computer, one can easily obtain 1 from 
equation (34), which leads to obtaining the exact 
analytical solutions (31)-(33) for the analysis of the 
process of freezing in a humid porous body. 

4. SOME ILLUSTRATJVE RESULTS 

Using a minicomputer WANG 2200, some examples 
have been treated. In the Figs. l-3, the upper lines show 
T(Fo,) and the lower ones : - 1 - B(Fo,). 

The diagrams can be interpretated in two different 
ways : 

(a) For a given time, the figures show temperature 
and moisture distributions in a halfspace (the surface 
X = 0 corresponds to Fo, -+ co). The right side of the 
figures corresponds to the frozen layer. From these 
figures it can be seen that the moisture is highest at the 
freezing front. Its increase in the zone near this front is 
in connection with the formation of a region where the 
moisture is lower than the initial one. 

(b) The figures represent the temperature and 
moisture potentials versus time, for a fixed space 

position. From the beginning of the process the tem- 
perature continuously decreases while moisture at first 
decreases and after that increases until the moment 
when the freezing front reaches the point under 
consideration. 

Figure 1 represents the influence of Kossovitch 
number at the position of the freezing front. The 
minimum and maximum of the moisture contents 
does not depend on Ko. 

Figure 2 illustrates the negligible influence of Luikov 
number both on the position of the freezing front and 
on the temperature distribution. But Lu influences 
considerably the moisture distribution. 

Fully analogous is the influence of the Posnov 
number (Fig. 3). 

It may be concluded that Pn and Lu characterize 
the effect of migration of moisture towards the freezing 
front accompanied with a formation of a zone with a 
moisture-content lower with comparison to the initial 
one. The lowering of the moisture content in this zone is 
roughly proportonal to the values of Lu and Pn. 

In the mathematical model there is no limit on the 
moisture content minimum. This is why the computer 
results are valid only when the minimum theoretical 
moisture content is higher than the physically accept- 
able one. In other conditions the phenomenon is much 
more complicated and corresponds to a periodic spatial 
distribution of the frozen structure. 

That is the reason to expect that for high enough 
values of Pn and Lu the freezing will be associated to 
the formation of “ice lens” experimentally registered 
in [l-2]. 
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SOLUTION EXACTE DE LA CONGELATION D’UN DEMI-ESPACE POREUX HUMIDE 

R&urn&-Un nouveau problkme de type Stephan est posk pour lequel on a obtenu des solutions exactes 
de distributions de tempirature et d’humiditk, aussi bien que de position du front de congklation t‘voluant 
dans un demi-espace poreux humide. La solution analytique est programmh en BASIC et quelques 

exemples sent prbentb sous forme de courbes. 

EINE EXAKTE LOSUNG FtiR DEN GEFRIERVORGANG IN FEUCHTEN, 
POROSEN HALBKORPERN 

Zusammenfassung-Es wird eine neue, dem Stephan-Problem Chnliche Aufgabe definiert. Exakte 
Lb;sungen werden angegeben fiir die Temperatur-und die Feuchtigkeitsverteilung sowie fiir die Lage der 
fortschreitenden Gefrierfront in einem feuchten, porBsen Halbkdrper. Die analytische Rechenmethode 
ist in BASIK programmiert. Fiir einige illustrative Beispiele sind Ergebnisse in Diagrammform angegeben. 
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TOYHOE PEUEHME AJIlT IIPOrlECCA 3A~~P3AH~~ BJIAZKHOI-0 
~OP~~OrO ~O~Y~POCTPAH~BA 

AimoTa~Hs- PaCCMaTpUBaeTC5l HOBaR 3ilAa'Ia TUlla CTe&lHa. ~OJiyYeHbi TO'IHbIe peUleHIlSl &W 

pacnpefienewifi TeMnepaTypbl H snarocoaepmasaa, a TaKme .ww nonoxewix nsumyI4erocx @powa 
3aMep3aHHSl BO BJlaXHOM IIOPHCTOM IlOJlyIIpOCTpaHCTBe. hannTmecKOe ptW.IeHHe 3anpOrpaMMU- 

pO3aHHO Ha R3blKe BASIK.HeKOTOpble TTpHMepbI npeaCTaBneHblrpa~,wqeCK~. 
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